
Spoofing key-press latencies with a generative keystroke dynamics model

John V. Monaco Md Liakat Ali Charles C. Tappert
Pace University, Pleasantville, NY 10570, USA

{jmonaco,md03901n,ctappert}@pace.edu

Abstract

This work provides strong empirical evidence for a two-
state generative model of typing behavior in which the user
can be in either a passive or active state. Given key-press
latencies with missing key names, the model is then used
to spoof the key-press latencies of a user by exploiting the
scaling behavior between inter-key distance and key-press
latency. Key-press latencies with missing key names can be
remotely obtained over a network by observing traffic from
an interactive application, such as SSH in interactive mode.
The proposed generative model uses this partial informa-
tion to perform a key-press-only sample-level attack on a
victim’s keystroke dynamics template. Results show that
some users are more susceptible to this type of attack than
others. For about 10% of users, the spoofed samples obtain
classifier output scores of at least 50% of those obtained
by authentic samples. With at least 50 observed keystrokes,
the chance of success over a zero-effort attack doubles on
average.

1. Introduction

Models of keystroke dynamics in the biometrics litera-
ture have predominantly been discriminative, with little at-
tention paid to the generative mechanisms underlying typ-
ing behavior. Discriminative models are generally favored
due to better asymptotic performance and efficiency [5].
Despite this, generative models have a wide range of ap-
plications and offer insight where discriminative models do
not.

In this work, a generative model for keystroke dynam-
ics is introduced and used to replicate typing behavior from
eavesdropped key-press latencies with missing key names.
This represents a non-zero-effort attack in contrast to the
commonly used zero-effort attack to evaluate the perfor-

The authors would like to acknowledge the support from the National
Science Foundation under Grant No. 1241585. Any opinions, findings,
and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National
Science Foundation or the US government.

mance of keystroke authentication systems.
Key-press times can be obtained remotely without in-

stalling a keylogger on the victim’s computer by observing
the network traffic generated from an interactive applica-
tion, such as SSH in interactive mode [15] and Google Sug-
gestions service [17]. A timing attack on SSH network traf-
fic timestamps collected during password entry can provide
about 1 bit of information in cracking a password. Song et
al. verified that the key-press latencies can be reliably deter-
mined from the packet inter-arrival time of interactive SSH
traffic, as the time between the actual press of a key and the
creation of the packet by the kernel is negligible [15]. In
[17], the key-press timestamps are masked by a buffering
mechanism, but still allow for the estimation of key-press
latency statistics.

With access to the victim’s computer, we could use an
attack such as in [12]. Observing a victim’s keystrokes
directly allow for typing behavior to be easily replicated.
Without any knowledge of the victim’s typing pattern, an at-
tack such as [14] can be used. The latter work used an inde-
pendent keystroke dynamics database to reduce the search
space of typing behavior. This works well for shorter strings
and assumes that the authentication system allows multiple
attempts, as it relies on enumerating many possible typing
behaviors.

The assumptions in this work fall between [12] and [14],
and are most closely related to [17] where it was shown that
a user’s mean key-press latency could be determined with
less than 20% error. We assume that we don’t have access
to the victim’s computer but are able to remotely observe
the network traffic generated from keystrokes in an interac-
tive application, such as SSH in interactive mode. The au-
thentication scenario in this work is also more stringent than
[14]. We consider long-text applications and the possibility
of only a single authentication attempt. This is a type of
sample-level attack that does not require knowledge of the
authentication algorithm itself. A user’s typing pattern is
imitated in a spoofed sample and provided to the keystroke
biometric authentication system. Such a scenario is typi-
cal of those recently introduced by some Massively Open
Online Course (MOOC) providers [7], where users have to

copy several sentences for the purpose of keystroke biomet-
ric verification.

Part of this work is motivated by the nature of time-
stamped human events. It is well known that the inter-event
times from human events generally follow heavy-tailed dis-
tributions and exhibit temporal clustering. There have been
various generative mechanisms proposed that explain this
phenomenon, such as a priority queue for task execution
[1]. Generally speaking, it is not clear what type of dis-
tribution the inter-event times follow, and it has been dis-
puted whether a power-law or log-normal provide better fit
[16, 2]. In this work, a log-normal distribution is used to
model key-press latencies, motivated by empirical observa-
tions and hypothesis testing.

Beginning in the 1980’s, there has been much interest in
the behavior of transcription typing and generative mech-
anisms underlying typing behavior. This line of research
seems to be underutilized by the keystroke biometric com-
munity. Both [3] and [13] provide a treatise on typing be-
havior. More recently, [18] uses a general human processor
model to explain some of the phenomena of transcription
typing.

This work proposes a novel generative model for typ-
ing behavior. It also demonstrates how the model can be
used to perform a non-zero-effort attack on a keystroke bio-
metric system by spoofing key-press latencies. The genera-
tive model is shown to be consistent with typing behavior in
long-text applications through Monte Carlo hypothesis test-
ing. The model is then used to perform a non-zero-effort
attack using key-press latencies with missing key names,
which can be observed remotely. Spoofing capabilities are
evaluated using an open-source algorithm with previously-
published performance results. The rest of the paper is or-
ganized as follows. The experimental data is described in
Section 2, the model is defined in Section 3, experimental
results are provided in Section 4, and conclusions in Section
5.

2. Keystroke data

A subset of a publicly-available keystroke database1 is
analyzed in this work [9]. The database contains long-text
input from a variety of users and under a variety of condi-
tions. Users were instructed to either copy a fable or answer
open-ended questions while their keystrokes were logged
by a Java application. Data were collected on both desktop
and laptop keyboards. This database is thought to be rep-
resentative of the type of data that would be collected in an
online course.

For this work, we randomly selected 129 users who an-
swered 4 prompts. Of this dataset, each sample contained
751 ± 94 keystrokes, with 69 fable prompts and 447 essay

1http://vmonaco.com/datasets/

prompts. This population was made up of 54 females and
71 males, with 53% of the users aged between 18 and 30.
There were 18 left-handed users, 105 right-handed, 2 am-
bidextrous, and 2 unspecified. About 60% of the samples
were collected on desktop keyboards, and the rest on lap-
tops.

In this work, only the press-press latencies, or simply the
key-press latencies, are utilized. This represents the data
that can be captured over a network during an interactive
session, such as SSH or Google instant. The ith key-press
latency is denoted by

τi = ti − ti−1 (1)

where ti is the timestamp of the ith key-press event. This
value is strictly greater than zero and has about a 16ms res-
olution with standard hardware on a Windows desktop [6].

3. Model
A Linguistic Buffer and Motor Control (LBMC) model

for typing behavior is proposed. The model is first moti-
vated by some empirical observations and then used to pre-
dict the empirical distribution of key-press latencies in the
dataset. The model is subjected to a goodness-of-fit test
through Monte Carlo hypothesis testing and then used to
replicate typing behavior.

The LBMC model begins with the source text that is
typed by the user. This could be text that is either copied
or generated by the user in answering an open-ended ques-
tion. The text consists of a sequence of words separated by
the space character. Each word can be made up of any non-
space characters, including punctuation and special sym-
bols.

In the model, the process of typing long text generally
requires two mechanisms. First, the words are loaded into a
buffer with finite linguistic capacity. The linguistic capacity
of the buffer is measured by the rarity of the words, and this
capacity is fixed for any individual. The rarity of a word is
its inverse frequency. The size of the buffer is the number
of keys that must actually be typed, and this is taken to be
the total number of characters in the buffer. Depending on
the linguistic capacity, the buffer may be capable of holding
several very rare words or many common words. Several
long common words may have the same linguistic capacity
as one or two short rare words. The resulting distribution of
buffer character sizes depends heavily on the word-length
frequency of the language.

After the buffer is loaded, it must be translated into a mo-
tor control program (MCP). The MCP specifies the physical
actions that must occur for the buffer contents to be typed
and displayed on screen. The model is summarized in Fig-
ure 1.

There are two types of delays that can occur in the
LBMC model. The first type of delay occurs while the

Figure 1: Linguistic Buffer and Motor Control (LBMC)
model. Words are loaded into a buffer with finite linguistic
capacity and then translated into a motor control program.

buffer is loaded and translated into the MCP. During this
time, the user may be reading the source text or thinking
to generate the source text; the user is in a passive state and
relatively long key-press latencies are observed. We assume
that the time to load the buffer and translate it into the MCP
is proportional to the character size of the buffer and that the
capacity of the buffer is limited by the rarity of the words.
The second type of delay occurs during the execution of the
MCP. During this time, the user is in an active state and
relatively short latencies are observed. The latencies in the
active state are proportional to the complexity of the MCP,
as detailed below.

Many works on keystroke dynamics assume that key-
press latencies are normally distributed, with [14] being an
exception. In our analysis, we find that key-press latencies
are right skewed, and generally follow a heavy-tailed dis-
tribution. We will show that the key-press latencies in both
states can adequately be described by a log-normal distribu-
tion, given by

f(τ ;µ, σ) =
1

τσ
√
2π

exp

(
−(ln τ − µ)2

2σ2

)
(2)

where µ is the log-mean and σ is the log standard deviation
(SD).

3.1. Passive state

Given a source text, we can predict the distribution of
key-press latencies in the passive state, within a scaling fac-
tor, by modeling the buffer character size. The linguistic
size of the buffer, sl, is a measure of the amount of rarity in
the buffer. When the linguistic size reaches capacity L, the
buffer is said to be full. Let w = 1

f be the linguistic size
of a word, where f is the frequency of the word. The lin-
guistic size of the buffer is given by sl =

∑
w. The buffer

character size, sc, is the total number of characters in the
buffer. The latencies in the passive state are proportional to
sc. Using the text from the keystroke database, the buffer

Figure 2: Keyboard key locations

character sizes are simulated as follows.

1. Initialize an empty buffer with a fixed linguistic capac-
ity

2. Add the next word to the buffer and increase the
buffer’s linguistic size by the inverse frequency of the
next word

3. If linguistic size of the buffer is over capacity, record
the character size and go back to step 1. Otherwise
repeat step 2.

The distribution of buffer character sizes when L = 0.05
is shown in Figure 3a. The best-fit log-normal distribution
is also shown and visually agrees with the predictions. We
have verified that a log-normal provides a good fit for a wide
range ofL. The buffer character sizes also agree with a copy
span of 7-40 characters that have been observed in transcrip-
tion typists [18].

3.2. Active state

After the linguistic buffer is loaded and translated into
a MCP, the user transitions to an active state and the MCP
is executed. The key-press latencies in the active state are
proportional to the complexity of movement between keys.
For a touch typist, the complexity of typing two keys that
are distant from each other is low. This is due to the ability
to use different fingers or hands for each of the key. When
two keys are close, the key-press latency will increase as a
result of the immediate reuse of the finger [3]. This phe-
nomenon has been established in transcription typists [18].

We define the key locations of a Dell USB L-100 key-
board, shown in Figure 2. Let the inter-key distances be
given be as

δi = ‖ki − ki−1‖ (3)

where ki is the key location of the ith keystroke, determined
by Figure 2. We propose that the log-key-press latencies are
inversely proportional to the inter-key distance, or alterna-
tively

τi ∝ exp−δi (4)

This claim is backed by some research that has shown mem-
ory search and motor learning processes to be characterized

(a) Key-press latencies in the passive
state.

(b) Key-press latencies in the active
state.

Figure 3: Predicted key-press latencies in the passive state
using buffer character size and in the active state using inter-
key distance. The best fit log-normal (dashed black) is
shown for both types of latency.

by the exponential function [4]. Similar to the previous sec-
tion, we can predict the distribution of key-press latencies
in the active state, up to a scaling factor. This can be ac-
complished by taking all the key distances in the source text
and modeling the distribution of e−δ . The predicted key-
press latencies are shown in Figure 3b. Again, a log-normal
provides a reasonable fit.

3.3. Hidden Markov Model

The true system state is hidden from observation, as we
cannot generally determine whether the user is in an ac-
tive or passive state. We introduce the latent variable zi
to indicate the hidden state of the system at the ith key-
press, where zi = 0 indicates the passive state and zi = 1
indicates the active state. Let µj , σj for j = {0, 1} in-
dicate the log-normal emission parameters in the passive
and active state. Also let a0, a1 be the probabilities of
staying in each state and π0,π1 be the probabilities of be-
ginning in each state. With the Markovian assumption,
the parameters can be efficiently determined by the Baum-
Welch algorithm. The model parameters consist of θ =
{µ0, σ0, µ1, σ1, π0, π1, a0, a1}. The Viterbi algorithm can
then be used to determine which key-press latencies corre-
spond to the passive state and active state. The proposed
model is summarized in 4.

The maximum likelihood (ML) parameters for the log-
normal emission have a closed form solution, given by

µ̂i =

∑N
n=1 γn(j) ln τn∑N

n=1 γn(j)

and

σ̂i =

∑N
n=1 γn(j)(ln τn − µ̂j)2∑N

n=1 γn(j)

Figure 4: HMM summary

where γn(j) is the posterior probability of state j, given
observations up to time N .

3.4. Goodness of fit

To determine whether the proposed model is consis-
tent with observed data, we perform a goodness-of-fit test
through Monte Carlo hypothesis testing. The test proceeds
as follows. For each user, we determine the ML parameters,
θm. The area test statistic between the model and empirical
distribution is determined [8], denote by Am. The area test
statistic is a compromise between the Kolmogorov-Smirnov
(KS) test and Cramer-von Mises test [8], given by

A =

ˆ
|PD(τ)− PM (τ |θ)|dτ

where PD is the empirical cumulative distribution and PM
is the model cumulative distribution. The marginal density
of the model is given by

g(τ ; θ) =

1∑
j=0

pjf(τ ;µj , σj) (5)

where pj is the steady-state probability of being in state
j and f is the log-normal distribution. Using the model
with trained parameters θm, a surrogate data sample the
same size as the empirical data is generated. The surrogate
data is then treated similarly to the empirical data, where
ML parameters θs are determined. The area test statis-
tic As between the surrogate-data-trained model and sur-
rogate data is computed. This process repeats until enough
surrogate statistics have accumulated to reliably determine
Pr(|As − 〈As〉| > |Am − 〈As〉|). The biased P value is
given by

I{|As − 〈As〉| > |Am − 〈As〉|}+ 1

m+ 1
(6)

where I{·} is the indicator function. A biased P value is
used because a large number of tests are being performed
and there is a possibility of increased Type I error using an
unbiased estimator [11]. The model-predicted and empiri-
cal distribution of key-press latencies for two random users

(a) P = 0.37 (b) P = 0.35

Figure 5: Empirical (solid line) and predicted (dashed line)
distribution of key-press latencies for two random users.
The predicted distributions match the empirical distribu-
tions very closely.

Figure 6: Distribution of P values in testing the null hypoth-
esis that the model is consistent with the data. The shaded
region indicates the 5% significance level, where the null
hypothesis was rejected. If the data was actually generated
by the model, the P values would follow a uniform distri-
bution given by the dashed line.

are shown in Figure 5. The model predictions visually agree
with the empirical distribution.

The null hypothesis (that the model is consistent with the
data) is tested for each user in the database for a total of 129
tests. As each test requires fitting 101 models (1 empirical
and 100 surrogate samples), this process is time consuming.
The null hypothesis failed to be rejected for 123 out of 129
users at the 5% significance level, demonstrating that the
proposed model cannot be rejected as a possible explanation
of typing behavior. The distribution of P values is shown in
Figure 6. The dashed line indicates a uniform distribution.

3.5. Empirical patterns

Ultimately, we would like to generate key-press latencies
that correspond to a user’s typing behavior. If we are given
some key-press latencies with missing key names, such as
those observed over a network from an interactive applica-
tion, we can exploit the key-press latency scaling predicted

by Equation 4. We assume that we have some predefined
text that we must generate key-press latencies for. This
could be, for example, a prompt that the user has to copy
for identity verification in an online course.

First, the HMM defined in the previous section is used to
identify the active-state latencies in the observed data. Only
the active state is of interest since this is where the inter-key
distance key-press latency scaling occurs. The active state
is itself composed of a mixture of log-normal distributions
for each unique key-distance. Let µδ and σδ be the log-
mean and log-SD for key-press latencies with key-distance
δ. Then, as predicted by Equation 4, we have

µδ = Cµδ + bµ σδ = Cσδ + bσ (7)

To verify this relationship and determine Cµ, bµ, Cσ , and
bσ , we can perform a least squares linear regression for each
user in the database. In doing so, we consider only the laten-
cies between letter keys when omitting the top 10 digrams
of each user, as the model does not account for highly prac-
ticed sequences such as “th” and “he”.

The result for two users is shown in Figure 7. The fast
typist is likely a touch-typist and shows strong negative cor-
relation between inter-key distance and log-key-press la-
tency, as predicted by Equation 4. The slow typist shows
the opposite behavior, as the log-latency increases with key
distance. This user is likely a hunt-and-pecker, spending
more time locating keys that are far apart. The log-SD in-
creases with key distance for both users, but more so for the
slow typist.

Based on these observations, we let the relationship be-
tween key-distance and latency be a function of typing
speed in the active state. That is, we want to predict Cµand
Cσ from the active state parameter µ1. We anticipate that
Cµ will be negative for touch-typists and positive for hunt-
and-peck users. Let

Cµ = mµµ1 + bµ, Cσ = mσµ1 + bσ (8)

where mµ, bµ, mσ , and bσ are hyper-parameters that can be
used to predict Cµ and Cσ . We can empirically determine
the hyper-parameters from Cµ and Cσ for each user in the
database. In Figure 8, Cµ and Cσ are plotted against the ac-
tive state parameter µ1 for each user. A least squares linear
regression is again performed to determinemµ, bµ,mσ , and
bσ . In the experimental results, these values are obtained on
an independent database, as this requires knowledge of the
key names.

3.6. Reproducing keystrokes

Given some predefined text, we can approximate typ-
ing behavior if we know the active state parameters µ1 and
σ1. The active state parameters can be determined from ob-
served key-press latencies with unknown key names. The

Figure 7: Inter-key distance vs. key-press latency in two
users. The fast typist (a,b) shows strong negative correlation
between inter-key distance and key-press latency (a). The
slow typist (c,d) shows a weak positive correlation (c). Both
users show positive correlation between key-distance and
log-SD latency (b,d).

(a) (b)

Figure 8: Hyper-parametersmµ, bµ, mσ , and bσ are used to
determine Cµand Cσ . (a) shows Cµ as a function of typing
speed. Typists in the upper left are fast hunt-and-peckers,
upper right: slow hunt-and-peckers, lower left: fast touch-
typists, and lower right: slow touch-typists. The log-mean
latency of a fast typists generally decreases with increased
inter-key distance. (b) shows a weak positive relationship
between Cσ and typing speed.

key distance vs. log key-press latency relationship seen in
Section 3.5 can then be reproduced to create seemingly-
natural key-press latencies. To this effect, we scale the pa-
rameters of the log-normal distribution based on the key dis-
tances in the text we are trying to simulate typing behavior

for.
Given observed key-press latencies with unknown key

names, first determine the ML parameters θ for the 2-
state HMM defined in Section 3.3, where µ1 and σ1 are
the log-mean and log-SD of the active state. The scaling
parameters Cµ and Cσ are then determined using Equa-
tion 8 with hyper-parameters obtained using an independent
dataset that is also publicly available [10].

Let δi be the key distance between keys i and i + 1 that
must be pressed to reproduce the predefined text. Also let
µδ and σδ be the log-mean and log-SD of latencies gener-
ated between keys with the distance δ. The following rela-
tionships hold, according to the scaling behavior defined in
Equation 7,

µδi − µδj =
Cµ

δi − δj
, σδi − σδj =

Cσ
δi − δj

(9)

With n unique key distances and Equation 9, we get
2n − 2 unique equations. The reproduced latencies should
also have the same first two log moments as the observed
latencies in the active state. Let µs and σs be the log-mean
and log-SD of all the spoofed key-press latencies. To en-
sure that the log-mean and log-SD of the spoofed latencies
are the same as the active state, the following relationships
must also hold

µs = µ1 =
∑

wδµδ

σ2
s = σ2

1 =
∑

wδ((µδ − µ1)
2 + σ2

δ)
(10)

where wδ is the normalized frequency of key-distance δ in
the text. Given n unique key distances in the text, together
with Equations 9 and 10, we have 2n equations with 2n
unknowns. This system of equations can be solved numer-
ically for µδ and σδ . The resulting µδ and σδ can then be
used to generate log-normal random variates for each key
distance in the sequence. The resulting latencies will have
log-mean µ1 and log-SD σ1, with scaling behavior Cµ and
Cσ . The process for replicating key-press latencies is sum-
marized here.

1. Using an independent dataset, determine hyper param-
eters mµ, bµ,mσ, bσ .

2. Observe the victim’s key press timestamps with miss-
ing key names

3. Compute the maximum likelihood parameters θ for the
2-state HMM defined in 3.3

4. Determine Cµ and Cσ using Equation 8 and active
state parameters µ1 and σ1

5. Using Cµ and Cσ , the active state parameters µ1 and
σ1, and key-distances δi of a predefined text, solve
Equations 9 and 10 to determine the distribution pa-
rameters µδ and σδ for each unique key distance.

6. Use µδ and σδ to generate log-normal random variates
for each key distance in the text. The spoofed latencies
will have log-mean µ1 and log-SD σ1 with key-press
latency vs. key-distance scaling behavior Cµ and Cσ .

4. Experimental results

We simulate the scenario of spoofing keystrokes using
data captured remotely with missing key names. Thus, only
the key-press timestamps are known to the attacker. The
2-state HMM is first trained on the observed latencies and
used to identify the active-state latencies. A spoofed sam-
ple is then generated to mimic the victim’s typing pattern
during authentication, as described in Section 3.6. The abil-
ity to replicate key-press latencies is evaluated by a well-
established authentication algorithm [9]. Since the pro-
posed model can only simulate key-press latencies, we omit
the features in [9] that rely on the key-release times, such
as duration and release-press latencies. Spoofing key dura-
tions is left for future work. We are left with 70 key-press
latency features, which consist of the mean and SD latency
of various key groups and digrams. The system uses a com-
plex fallback hierarchy to account for missing data and an
aggressive outlier removal algorithm. Source code for this
classifier is publicly available2.

The authentication and spoofing procedure is as follows.
For each query sample, we use the key-press latencies with
missing key names to generate several spoofed query sam-
ples of the same length. The spoofed query samples use
the same text as the authentic query sample. This does not
invalidate the procedure because the authentication system
does not measure the linguistic style of the user in any way.
Using the authentic query sample and the spoofed samples,
we then obtain the authentic and non-zero-effort authentica-
tion decisions, respectively. Zero-effort authentication de-
cisions are obtained in the usual way, by authenticating the
query samples from other users. The reason for generating
several spoofed query samples is to obtain the asymptotic
error rates, as an unlimited number of spoofed samples can
be generated and used in practice.

Results are obtained by a stratified 4-fold cross valida-
tion. In each fold, the labeled reference set is used to train
the dichotomy classifier from [9] with key-press latency fea-
tures only. The query set is then used to obtain the zero-
effort and non-zero-effort error rates. As described above,
and with 129 users with 4 samples each, a total of 66, 564
zero-effort authentications performed. This includes 129×
4 = 516 mated pairs and 129×128×4 = 66, 048 zero-effort
non-mated pairs. We generate 10 spoofed samples for each
query sample, thus 129 × 4 × 10 = 5160 non-zero-effort
attacks are performed. The ROC curve is obtained for both

2https://bitbucket.org/vmonaco/
dichotomy-classifier

Figure 9: Zero-effort and spoofed ROC curves

the zero-effort and non-zero-effort authentications. The rel-
ative increase in equal error rate (EER) and area under curve
(AUC) are reported to measure the effectiveness of the at-
tack. Additionally, we compare the classifier output scores
of the authentic samples to the spoofed samples. For each
sample, let the r score be the ratio of the spoofed classifier
output score to the authentic classifier output score. When
r = 1 the sample is perfectly reproduced, and when r = 0
the spoofed sample is completely ineffective.

We first obtain results using full query samples for ob-
servation. In this scenario, the attacker has the opportunity
to observe ∼ 751 keystrokes from the victim. The zero-
effort and spoofed ROC curves are shown in Figure 9. The
zero-effort EER is 7.5% and the spoofed EER is 12.9%, an
increase of 73.4%. The zero-effort AUC is 0.028 and the
spoofed AUC is 0.061, an increase of 118%. The average
r score is 0.195. The distribution of r scores is shown in
Figure 10a where for about 10% of users, the spoofed sam-
ples obtain classifier output scores of at least 50% of those
obtained by the authentic samples.

Next, we obtain results as a function of the number of
observed keystrokes. Having the opportunity to observe
∼ 751 keystrokes is an unlikely scenario. More realistic
is being able to observe a couple dozen keystrokes from the
victim. We simulate this scenario by limiting the number
of keystrokes observed from the query sample. The ob-
served keystrokes range from 5 to 500. The relative in-
creases in EER and AUC over zero-effort results are shown
in Figure 11 and the r scores in Figure 10b. At 50 ob-
served keystrokes, the spoofed samples obtain classifier out-
put scores about 20% of the authentic samples and double
the AUC.

5. Conclusions
This work proposed a generative model for keystroke dy-

namics and used that model to spoof the key-press latencies
of a user after having observed latencies with missing key
names. The model failed to be rejected as an explanation of
typing behavior through statistical hypothesis testing. The
negative correlation predicted by the model between inter-

(a) r score distribution (b) r score vs. number of observed
keystrokes

Figure 10: Distribution of r scores for the full sample
observation (a) and as a function of number of observed
keystrokes (b).

Figure 11: Relative increase in EER and AUC as a function
of the number of observed keystrokes.

key distance and key-press latency was empirically verified
and shown to increase with typing speed. This relationship
allows key-press latencies to be spoofed by predicting the
latencies that should occur in a predefined text. The pro-
posed method was shown to require only 50 keystrokes to
double the AUC, and is capable of obtaining a classifier out-
put score 20% of an authentic sample, on average.

A model for key-release times (i.e. key durations) is left
for future work, as this work dealt only with key-press la-
tencies. The proposed model in this work may also be used
to recover the key names from key-press latencies, which
was the focus of [15]. Doing so may offer stronger spoofing
capabilities and perhaps motivate the development of jam-
ming devices to prevent information leakage through key-
press timings.

References
[1] A.-L. Barabasi. The origin of bursts and heavy tails in human

dynamics. Nature, 435(7039):207–211, 2005.
[2] A.-L. Barabási, K.-I. Goh, and A. Vazquez. Reply to com-

ment on ”the origin of bursts and heavy tails in human dy-
namics”. arXiv preprint physics/0511186, 2005.

[3] D. R. Gentner. Keystroke timing in transcription typing.
In Cognitive aspects of skilled typewriting, pages 95–120.

Springer, 1983.
[4] A. Heathcote, S. Brown, and D. Mewhort. The power law

repealed: The case for an exponential law of practice. Psy-
chonomic Bulletin & Review, 7(2):185–207, 2000.

[5] A. Jordan. On discriminative vs. generative classifiers: A
comparison of logistic regression and naive bayes. Advances
in neural information processing systems, 14:841, 2002.

[6] K. Killourhy and R. Maxion. The effect of clock resolution
on keystroke dynamics. In Recent Advances in Intrusion De-
tection, pages 331–350. Springer, 2008.

[7] A. Maas, C. Heather, C. T. Do, R. Brandman, D. Koller,
and A. Ng. Offering verified credentials in massive open
online courses: Moocs and technology to advance learn-
ing and learning research (ubiquity symposium). Ubiquity,
2014(May):2, 2014.

[8] R. D. Malmgren, D. B. Stouffer, A. E. Motter, and L. A.
Amaral. A poissonian explanation for heavy tails in e-mail
communication. Proceedings of the National Academy of
Sciences, 105(47):18153–18158, 2008.

[9] J. V. Monaco, N. Bakelman, S.-H. Cha, and C. C. Tappert.
Developing a keystroke biometric system for continual au-
thentication of computer users. In Intelligence and Security
Informatics Conference (EISIC), 2012 European, pages 210–
216. IEEE, 2012.

[10] J. V. Monaco, J. C. Stewart, S.-H. Cha, and C. C. Tappert.
Behavioral biometric verification of student identity in on-
line course assessment and authentication of authors in liter-
ary works. In Biometrics: Theory, Applications and Systems
(BTAS), 2013 IEEE Sixth International Conference on, pages
1–8. IEEE, 2013.

[11] B. Phipson and G. K. Smyth. Permutation p-values should
never be zero: calculating exact p-values when permutations
are randomly drawn. Statistical applications in genetics and
molecular biology, 9(1), 2010.

[12] K. A. Rahman, K. S. Balagani, and V. V. Phoha.
Snoop-forge-replay attacks on continuous verification with
keystrokes. IEEE Transactions on Information Forensics and
Security, 8(3):528–541, 2013.

[13] T. A. Salthouse. Perceptual, cognitive, and motoric aspects
of transcription typing. Psychological bulletin, 99(3):303,
1986.

[14] A. Serwadda and V. V. Phoha. Examining a large keystroke
biometrics dataset for statistical-attack openings. ACM
Transactions on Information and System Security (TISSEC),
16(2):8, 2013.

[15] D. X. Song, D. Wagner, and X. Tian. Timing analysis of
keystrokes and timing attacks on ssh. In USENIX Security
Symposium, volume 2001, 2001.

[16] D. Stouffer, R. Malmgren, and L. Amaral. Comments on ”the
origin of bursts and heavy tails in human dynamics”. arXiv
preprint physics/0510216, 2005.

[17] C. M. Tey, P. Gupta, D. Gao, and Y. Zhang. Keystroke timing
analysis of on-the-fly web apps. In Applied Cryptography
and Network Security, pages 405–413. Springer, 2013.

[18] C. Wu and Y. Liu. Queuing network modeling of transcrip-
tion typing. ACM Transactions on Computer-Human Inter-
action (TOCHI), 15(1):6, 2008.

